Sequential Anomaly Detection Using Wireless Sensor Networks in Unknown Environment
نویسندگان
چکیده
Anomaly detection is an important problem for environment, fault diagnosis and intruder detection in Wireless Sensor Networks (WSNs). A key challenge is to minimize the communication overhead and energy consumption in the network when identifying these abnormal events. We present a machine learning (ML) framework that is suitable for WSNs to sequentially detect sensory level anomalies and time-related anomalies in an unknown environment. Our system consists of a set of modular, unsupervised, machine learning algorithms that are adaptive. The modularity of the ML algorithms to maximize the use of resource constrained sensor nodes in different environmental monitoring tasks without reprogramming. The developed ML framework consists of the following modular components. First, an unsupervised neural network is used to map multi-dimensional sensor data into discrete environmental states/classes and detect sensor level anomalies. Over time, the labeled classes form a sequence of environmental states. Next, we use a variable length Markov model in the form of a Probabilistic Suffix Tree (PST) to model the relationship between temporal events. Depending on the types of applications, high order Markov models can be expensive. We use a symbol compression technique to bring down the cost of PST models by extracting the semantic meaning out of temporal sequences. Lastly, we use a likelihood-ratio test to verify whether there are anomalous events. We demonstrate the efficiency our approach by applying it in two real-world applications: volcano monitoring and traffic monitoring applications. Our experimental results show that the developed approach yields high perforYuanyuan Li Biostatistics Branch, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA, e-mail: [email protected] Michael Thomason Electrical Engineering and Computer Science, The University of Tennessee, 1520 Middle Drive, Knoxville, TN 37996, USA, e-mail: [email protected] Lynne E. Parker Electrical Engineering and Computer Science, The University of Tennessee, 1520 Middle Drive, Knoxville, TN 37996, USA, e-mail: [email protected]
منابع مشابه
A Novel Ensemble Approach for Anomaly Detection in Wireless Sensor Networks Using Time-overlapped Sliding Windows
One of the most important issues concerning the sensor data in the Wireless Sensor Networks (WSNs) is the unexpected data which are acquired from the sensors. Today, there are numerous approaches for detecting anomalies in the WSNs, most of which are based on machine learning methods. In this research, we present a heuristic method based on the concept of “ensemble of classifiers” of data minin...
متن کاملEvaluation of an Intrusion Detection System for Routing Attacks in Wireless Self-organised Networks
Wireless Sensor Networks (WSNs) arebecoming increasingly popular, and very useful in militaryapplications and environmental monitoring. However,security is a major challenge for WSNs because they areusually setup in unprotected environments. Our goal in thisstudy is to simulate an Intrusion Detection System (IDS)that monitors the WSN and report intrusions accurately andeffectively. We have thus...
متن کاملSecuring Cluster-heads in Wireless Sensor Networks by a Hybrid Intrusion Detection System Based on Data Mining
Cluster-based Wireless Sensor Network (CWSN) is a kind of WSNs that because of avoiding long distance communications, preserve the energy of nodes and so is attractive for related applications. The criticality of most applications of WSNs and also their unattended nature, makes sensor nodes often susceptible to many types of attacks. Based on this fact, it is clear that cluster heads (CHs) are ...
متن کاملIntrusion Detection in Wireless Sensor Networks using Genetic Algorithm
Wireless sensor networks, due to the characteristics of sensors such as wireless communication channels, the lack of infrastructure and targeted threats, are very vulnerable to the various attacks. Routing attacks on the networks, where a malicious node from sending data to the base station is perceived. In this article, a method that can be used to transfer the data securely to prevent attacks...
متن کاملFDMG: Fault detection method by using genetic algorithm in clustered wireless sensor networks
Wireless sensor networks (WSNs) consist of a large number of sensor nodes which are capable of sensing different environmental phenomena and sending the collected data to the base station or Sink. Since sensor nodes are made of cheap components and are deployed in remote and uncontrolled environments, they are prone to failure; thus, maintaining a network with its proper functions even when und...
متن کاملOutlier Detection in Wireless Sensor Networks Using Distributed Principal Component Analysis
Detecting anomalies is an important challenge for intrusion detection and fault diagnosis in wireless sensor networks (WSNs). To address the problem of outlier detection in wireless sensor networks, in this paper we present a PCA-based centralized approach and a DPCA-based distributed energy-efficient approach for detecting outliers in sensed data in a WSN. The outliers in sensed data can be ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014